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We investigate here the dynamics of polymers at equilibrium by means of a self-consistent approxima-
tion that can be applied to arbitrary Hamiltonians. In particular we show that for the case of two-and
three-body excluded volume effects, and the Oseen hydrodynamic interaction, the Gaussian self-
consistent approach can recapture what we believe to be the essential features across the collapse transi-
tion. This method is based on the approximation of the complete Langevin equation by a Gaussian sto-
chastic ensemble obeying a linear equation of motion with some unknown effective potential AV, (¢) and
friction. Self-consistency equations for this potential are derived and studied in a variety of regimes
across the collapse transition. Here we have calculated the friction §, scaling behavior. The results of a
simple power counting analysis of the equations, applicable for sufficiently large polymers, confirm the
expected law £, < N'q =¥ and give exponent values v=% for the Flory coil, v=% for so-called 6 point,

and v=§ for the collapsed globule phase. Further applications of the method for various experimental

observables of interest, e.g., the dynamic structure factor of light scattering, are presented, and again

simple applications are discussed.

PACS number(s): 36.20.—r, 64.60.Ak, 64.60.Fr

I. INTRODUCTION

The equilibrium properties of polymers in dilute solu-
tion have been studied a great deal in recent years, yield-
ing many interesting insights. There are well founded
scaling [1] and statistical mechanical methods [2] that
can be applied, and computer simulation has proved to be
a particularly powerful tool [3]. However, methods that
permit us to study dynamics and kinetic phenomena are
much less well developed, and the traditional methods of
nonequilibrium statistical mechanics [4] are not so readi-
ly applied. Furthermore, computer simulation of these
properties is often prohibitively time consuming [5].
These are unfortunate limitations for two reasons. First,
the principal experimental information on the structure
and dynamics of polymers comes from dynamic light
scattering [6], and one would therefore like to have a sim-
ple and general method to calculate the dynamical struc-
ture factor for any dilute polymer system of interest.
Secondly, there is growing interest in the kinetics and
nonequilibrium processes in conformational transitions
such as the polymer- and protein-folding transition [7],
and it would be useful to have a single method to calcu-
late the dynamics and kinetics of such phenomena. The
present paper offers an approach to the first of these
problems, determination of the dynamics, and in a subse-
quent publication we shall show that an extension is pos-
sible to deal with nonequilibrium phenomena.

The present method has the benefit that it can be ap-
plied to any dilute polymer system with potential interac-
tion that can be Fourier transformed. It may be shown
to equilibrate to a variationally determined Gaussian en-
semble, and in a sense we can say that the method we
here present is the direct extension of such equilibrium
methods to the realm of dynamics. Related ideas have
been applied to describe the dynamics of concentrated
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solutions [8—-10], when the formulation in terms of col-
lective density variables rather than polymer coordinates
is more appropriate.

II. METHOD

We proceed from the Langevin equation

4 v
—kgxf =g | )

-9q

xn=3 HZ (x(1)

,
a',q

written for simplicity for cyclic polymers satisfying
boundary conditions x,, . y =x,,,m=0,...,N—1. The
case of open polymers may be easily recovered from our
formulas, there being only minor differences from the
definition of the form of Fourier transformation which
we write for rings as follows:

1N i2mng
X, _Fnzo exp N X,
(2)
N1 —i2mwng
X, = > exp g -
q=0 N

In principle the potential V includes contributions from
excluded volume effects up to two- and three-body in-
teractions,

V=V,+V;=u,S 8(x,, —X,)
mm'

+u; Y 8(x,, —x,)8(x,, —x%,,), (3)

mm'm'

where u,,u, are virial coefficients and m¥*m's#m"".
However, we note that the present method can be readily
applied to any potential that can be Fourier transformed.
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We may note also that here H‘;“," is the Oseen hydro-
dynamic interaction tensor and the noise has the second
order correlation function

(g(Omg(")y =(H )32k p T8t —1")8,08 _ 4 - @

The explicit form of the Oseen tensor, describing the rela-
tion between generalized velocities and forces
v2=3 wHIZFZ, will be specified in Sec. IV. For some
situations it is feasible to neglect the hydrodynamic in-
teraction and, in any case it is instructive to discuss the
simplest case where we take a diagonal constant mobility
tensor

HEE =5718,,8,, . (5)
In the absence of hydrodynamics §, =N is simply a con-
stant. If we include hydrodynamics the mobility would
exhibit nontrivial g and N dependence. We begin by for-
mally integrating the Langevin equation to obtain

x(1)=x a<o>+f dzle “(x(2,))

14

— ke x & (1)) — —2—
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For a diagonal mobility tensor it is more convenient to
integrate as follows:

x;’(t)“—‘G,?(t)x:(OH-éfotdth;)(t—-t,)
v
2t ——2 |, @)
U ax (1)
k
GAt)=exp | — 1t (8)
&4

In our self-consistent approach the dynamics of the full
Langevin equation (1) is approximated by the Gaussian
stochastic ensemble, which in diagonal form is

S X () =—AV, ()x;+ng(1), ©

with unknown functions AV, (¢) and §, to be determined
later. We may note that this is the most general Gauss-
ian theory, and later we shall find that, for equilibrium
dynamics the effective potential has no time explicit
dependence. Now, the noise distribution is considered to
be Gaussian with correlations (4) where H;‘q‘?' is set equal
to (5). The formal solution is

xXt)=Gl(t)x <o>+—f dt,Gl(t—t,mX(ty),  (10)

1)+d

ky—AV, =0 3 Gam' = 4o b Jom,

gm,

1 t
Glt)=exp —-g—qfodtlAVq(tl) : (1n

where AV, (¢) must be determined self-consistently.

Now, the Langevin ensemble possesses the equilibra-
tion property that, given any initial condition x,(0),
asymptotically x,(#) reaches the equilibrium distribution.
We restrict our attention to the case where the initial dis-
tribution is already at equilibrium. In this case one can
solve the dynamics equations exactly. Note that the equi-
librium distribution is space isotropic, and therefore all
spatial components give equal contributions in the aver-
ages. It is also important to note the difference between
the ¢=0 diffusive mode and other modes describing
internal motions of the polymer. Thus

(Ix, 120y =(1Ix,1%(0)) (g#0), (12)
(Ixo(8)[*) =(]x,(0)|2) + 6Dt , (13)
(xo(2)-%5(0)) =([x,(0)[?) , (14)

where D is, by definition, the diffusion constant. The
only surviving correlation function with nontrivial time
dependence for finite g will be (x_,(0)-x,(z)). It may be
shown that for equilibrium dynamics one can assume
AV, is independent of time without any additional as-
sumptions.

III. MODEL WITHOUT HYDRODYNAMIC
INTERACTIONS

For (12) to be true, we obtain from (10) after multipli-
cation by x2 (¢) and integration over 7,

3kyT
(Ix, 140y =(x, 120y =—

(15)
Similarly, multiplication of the same equation by x2 ,(0)
gives

(x_,(0)-x,(0)) =G ()(|x,*(0)) . (16)

From (7) we obtain the second equation,

(x_,(0)-x,(1)) =GX)(|x,|%0))

Lt 60—
qfodthq(t 1)

av
x(%,(0) ax_q(t1)>' (17)

Using the results (A6) and (A10) from Appendix A and
carrying out the integration over time, we obtain an
equation for AV,

1)’"1 ——zeq’”‘l”‘z mym,

5/2
¢+ Do

mm'm’

P2 5/2 ’
(Dpp D, = % )

(18)
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where mi=m—m', my= m"—m’, and also
Uy, =u,/(2m)"?, ﬁ3—u /Q2m)?
Given the relations (15), (A7) (A8), (A11), and (A12)

we now have a closed equation for AV,. In principle this
may be solved numerically. However [11], to exact some
conclusions about its properties we suppose that, for
small g, we can seek solutions with the properties

2mq

N ’
where A is some, as yet unknown, constant. For large N
and small g we obtain

AV,=NA"'g"”, 7 (19

2A4kyT 27 —
D,=—2— 3 ﬂ’i"ﬂ ~ AkyTm? (20)
N g=2mw/N q
If we define parameters b and v by the relation
(X =X )?) =Dy py=bm —m'[*, (1)

then v=B—% and b z\/AkB T. Therefore for small g
Eq. (18) reduces to the dominant balance equation,

k72___A—l-q-2v+1=I:u2b——565v—1+111u3b-868v—2 . (22)

Here, I',I'’ are simple numerical constants. In fact, from
this analysis we may extract three different regimes.
When u, >0 we find dominant balance between the order
g* and the u, term then given the Flory exponent v=2
and b2~ (u,/k)?’*. When u,=0 we have a balance be-

tween §> and the u; term, and the so-called  point re-
J

(x_g(0)x, () =(|x, A0+ [ 3

aa',q’

+{x 2 (OHZ (x(£,))3(1;))

ey (%% (O (x(1))xg (1)) = (% (OHEE (x(1))—

sults: v=21, b2~ (u3/k)'/*. Finally, when u, <0, we are
in a collapsed state with balance between the two-body
and three-body terms giving v=1 and b2~ (—u;/u,)*’.
Evidently, using Eq. (13) we find D=kzT /&, and
without hydrodynamics D =kyzT /(N§).

IV. MODEL
WITH OSEEN HYDRODYNAMIC TENSOR

To determine the effects of including the hydrodynam-
ic interactions, let us return to the integral equation (6).
The Oseen tensor can be presented as follows:

aa’ — (i2m/N)(q'n'—gn)
HZ (x(1)) Se

2
* " f dw ?aa’(ﬁ)
2r?} W

. 1
Xexp[—iw-X )" x,(¢)] + )
[T RO R
(23)
P W)=8,— Wy , Dpg=w,/w .
Here n, denotes the viscosity of the solvent. We may

note that there is an additional bare friction term &, that
arises from the diagonal element of the Oseen tensor
HZ. Tts contribution may easily be calculated from the
results [(A6) and (A10)] in Appendix A, but it is
suppressed here because its effects vanish in the large-N
limit, as we shall see later in Eq. (31). Now in place of
Eq. (17) we would have

aV >
2 (8)

(24)

We note that the final term in the above equation vanishes. Details of the evaluation of the other two terms are given in

Appendix B. Now, including up to two-body terms we find

1 cos[2mq(n —n')/N]

Kea 32 i N 2 L2, A%
—¢ 2u, cos(2mgm /N )—cos(2mgm, /N )
? 3(277-)377SN mm'n :D%nl—mz

where m,=m—n,m,=m'—n.
small g power countmg gives

Now for large N and

—6v—2
q9

uzgq an b6 ’
(26)

gqN Qb A—1q2v+l_Ju

where J',J'' are again some numerical constants. By
comparison with Eq. (22) one finds
Eq=bu,N"qg' ™" 27)

In principle one might retain three-body terms in Eq.

_p2
[(:Dml—mz‘ﬂml é

)—1/2
mymy—m,

— — L2 —1/2
Dy —myDmy = Cnym —my)) 715 (25)

f

(26), but this reproduces the same balance equation (22),
essentially because §, is a common factor in all interac-
tion terms.

The above analysis is valid for all but the g =0 diffusive
mode. Thus instead of (17) we should consider the equa-
tion for {|x,|%(#)) and the dynamics is now trivial,

1 t
+— | dt'mg5(t’")
to fo Mo

from which we find (13). One can see that k,=0 and
cg’™ =0. Therefore neither ¥ nor H%* contain x,. Thus
the correlation function of the interaction term with x(¢)

x§(1)= (28)
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vanishes as there is no term x, with which to couple.
Hence we find

(Ixol2(2)) =(Ix,/%0))
+f S (xOHEE (x(1))m%(2,)) . (29)

aa'q’
This leads to
6k, T 6kyT 2k T
=
gO Ngb nsN

<SS

X(exp [——iw-z e x, (1) ]> .
P

(30)
Again, at equilibrium, we find
1 _ 1 12
D72 (31)
§o Ng,  (2m)*/*q,N? ,,g,, non

Thus for large degree of polymerization N we estimate
the sum, and neglect the bare friction term, and obtain

So=bnN (32)
and the diffusion constant is determined to be
D=kgT /&,

V. DYNAMIC STRUCTURE FACTOR
OF LIGHT SCATTERING
By definition the dynamic structure factor is
1 .
q(k,t)=—1\72 <exp{tk-[xn(t)—xm(0)]}> . (33)

nm

The wave vector k is related to the wave length A, refrac-
tion index n, and scattering angle 6 as follows:

A 2

In the Gaussian approximation the structure factor takes
the form

g(k,t)=7;— S exp {—%kzz (Ix, 12(0)) +(|x,[%(0))
nm q
_ 2mg(n —m)
2 cos N ]

X(x (0)-x (t))] ] (34)

Now we extract contribution of the zero diffusive mode
from the remaining internal modes and substitute the
averages,

gk, t)=go(k,t)8in(k,1) , (35)

go(k,t)=exp(—k2Dt) , (36)
Eint(k, 1)
— i 2 ex k2 2 T 1—cos M
N nm P q+#0 AV N

The internal modes part may be again decomposed

gim(k,t)—— zg(m \Ag, (k1) , -
g,(.gf(k)=e(k2/m"*m ~p —(K2/2)2n—m|? , (39)
kBT 27Tq(n —m)
Agnm(k)t)zexp ——k2 2 cos
g0 AVq N
X(1—e ATa%ta¥) (40)

In Appendix C we have presented an approach that is
valid in the whole k range. However, it is possible to
consider two different regimes that result in further
simplifications. In the limit k252N?¥ << 1 one can neglect
the contribution of internal modes, and the structure fac-
tor will be given entirely by the diffusion part g,(k,#). In
the opposite case k2b2N?'>>1 the contribution of inter-
nal modes becomes essential. In fact, for large N, their
distribution is almost quasicontinuous, so that we may
convert the sums into integrals. If we take the formula
for the friction §, Imeq1 ¥, with I being a numerical
constant, the inverse relaxation times will be

kgT
1/7,=—2—g% . (41)
Ib° 7,
By introducing new integration variables one can obtain
2v
. k,t = ,0)———
8int (K, 1) =g (k,0) =7

X fo du exp[ —u?—(I',t)*/3
XF(u(Tpt)" V)],

(42)
2281(B)
1/2F( __ v)

where the static structure factor and I';, are given up to
some numerical coefficients by

g(k,0)=(kb)~ /", (43)
kpT
I, ~——k3. (44)

s

— 53V
X),

FH(u)=—

fw 2v+1 cos(ux)(1—e

For large time I'; ¢ >>1 (42) may be further simplified to
give

Sin(k, 1) =g (k,0)exp[ —F(ONT,)*3], (45)
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where  F(0)=—22"W g (2B)/[2*/*T(5 /3w (—v)].
Also the quantity of interest is logarithmic derivative at
zero time. For large k£ we find by simple differentiation

kyT
DK2+C(v)—2—k3 . (46)

s

g(k t)=

.._i
Qk)=——

The value C(v) may be independently expressed in terms
of the static structure factor g(k,0) [2],

K2 —(k§)>

Ck3=g(k,0! [ 4 =

g(k+q,0),
47)

(27'r)3

that is k independent if we use the asymptotic formula
(43) for k2b2N?¥>>1. It is interesting to note that in this
regime C(v) does not contain any polymer specific pa-
rameters, and it is therefore referred to as the universal
k3 regime. This phenomenon persists in most realistic
models and is quite easily observed in experiment.

VI. CONCLUSION

We have shown that it is possible to generalize the
equilibrium method of variational approximation by a
Gaussian ensemble to the realm of dynamics. The
present equations produce precisely these variational
equations in the static limit, though the problems that
beset the equilibrium approaches to infinite repulsive po-
tentials are also present in this generalization. As at
equilibrium, these problems arise from the absence of a
short-ranged cutoff, and with sensible analysis they are
expected to reproduce the important features in a wide
range of problems. It is possible to avoid these problems
by inclusion of an explicit cutoff, but the equations then
become considerably more cumbersome for analytical
analysis.

It will be of some interest, in future, to examine dilute
polymer problems with a range of conformational transi-
tions.
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APPENDIX A: CALCULATION OF SOME AVERAGES

We begin by expressing the potential V in terms of an
integral over plane waves.

Vy(t))= uzzf

exp q

ik- 3 x, (¢t |,
(2 )3 p q

Viti=us 3 [ ;:)3(71%3— (A2)
X exp [izxq,(tl)-(kc;,""’+pc;t"m” [
Pz
where
cq""'Eexp i21lrvqn —exp i21;-\€n' . (A3)

Evaluating the derivative 3V /9x % (¢, ), multiplying it by
x 2 ,(0), and calculating the average we find

@ (0) ! >
<x_q ax %, (1))

a
=u, zricq’"’" f%ka(x‘iq(O)

, ke x % (e))
o *acT Ty ( ’qéq afg XUt vy
dk tZkﬁc"’”‘ qﬁ( v
<[ B( ).
BFa
(A4)

The average in a Gaussian distribution assuming a spa-
tially isotropic initial condition is
12 kc"‘m Xy A2))

(e 7 ) =exp

— K3 e 13 [y 21,0
q
(A5)

The first average in (A4) may be obtained by means of
differentiation with respect to auxiliary parameters.
After integration over k we finally obtain

0.2 \_
<"*q( a ax_q(t1)>_ (27 )3/2

(1%, 1%(0))G)(2,)

X om—m" . (A6)
2 B R O
D, (t)=4 dq,,,n(qu,Iz(t,)), (A7)
P
dym=lcs 2=2— ZCoszz%Ln—. (A8)
Calculation of the three-body term is similar,
oV,
<x‘_’_q(0)—a—>
axZ ()
=—u3G)(£;){|xZ[*(0))
dk dp 2
X —_— a mm + a mm
i J Gy oy KT R

—(1/2) 3 [ke ™ +pet ™ 2 |x | Xey))
Xe ¢
(A9)

The result is
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av, ) v dq,mlmmz(tl)+dq,m2$ml(t1)_Zeq,mlngmlmz(tl)
<x_q(0)7>= —(Ix,[%0)) G/ (z) 3 > 7 (A10)
ax_q(tl) (27 ) mm'm" [mml(tl)i) (t )_gmlmz tl)]
gml"n:%(‘@ml'"’z_‘@ml—ﬂ'"z) , (A11)
eq:m1m2:%(d‘1vm1—m2_d%m1 —dym,) s (A12)
where we have introduced relative coordinates m,=m'—m,m,=m’'—m".
APPENDIX B: AVERAGE FOR USE IN HYDRODYNAMICS
One may obtain the formula
< L(Oexp [—iw- zc'm zz)} < (s >> =5975,,G/(1,){ |xZ(O)exp ——wzz,,,,,,<|x,,|2<0)> (B1)
The second part is equal to zero contribution after convolution with ?,,.. After integration wé obtain
1 cos[2mq(n—n )/N]
(x%(OHZY (x(t)))xZ (8,)) = ———=77—5 G (£,){|x,[%0)) (B2)
aazq ’ 2 2= ) g7 O 1) Z D2,
For the interaction we find
, av. . . ,
<xgq(o)exp _iw'chnxp"z)]axTzz)>= u, Zf om )Ska,c'ﬁ';(kac;"'" —wae;" )G (8,)(|xg1%(0))
4 q' \*2
1 , .
X exp —52|kcp"’"' —we," [X(x, 12(2,)) (B3)
P
With the help of the integral
dk dw KkK’w?—(kw)? _ _
exp[ —ak?—pBw?—y(kw)]= 2a) " XH4aB—y?) 172 | B4
I Qr)? 2r)} W l Bw =y (kw)] =1 15 (2e) "daB—y B
one finds
2<x (OVHI (x(t ))L)
AN 2 axZ (1)
2u, cos(2mgm /N )—cos(2mgm, /N )
= —f GY(1,)(Ix,120)) 3 — 2
3(277) mm'n $m1—m2
X[(Z)ml_’"z’@’"l_6’3"1"’1_mz)ml/z_(‘@ml—mszm2_62 m,m, —mz)l/z] (BS)
where m;=m—n,m,=m’'—n.
[
APPENDIX C: INTERNAL MODE DECOMPOSITION G,()=1(x_,(0)-x,(1))

OF THE DYNAMIC STRUCTURE FACTOR

=(kpT/AV,)exp[ —(AV, /5, )t] .

It is possible to derive another representation for the
dynamic structure factor valid for any k. For large N we
can replace double sums by integration over the relative

; functions I, (z)
coordinate mi=n

2mgn

ezcosq¢= i eim¢Im(z)

m=—ow

k*G,(t)cos

N—1
Zint(Ks ) /8in (K, 0)= fONdn II exp
g=1

(&3))]

Using the generating function of the modified Bessel

(C2)

for each internal mode labeled by a g, after integration

where over n we obtain
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8int(k, 1) /8 (k,0)

©

= > Iml(szl(t))"'ImN_l(szN_l(t)) )
my,...my_|=—o®
(C3)
where summation is restricted by the condition
mi+2m,+ - +(N—1)my_,=0. (C4)

S1

Such a representation is useful for asymptotics at large ¢
when it is enough to consider only leading terms in the
series (C3). In the simplest case, we may retain only the
contribution of the first internal mode and the formula
then reduces to simply

Gint (K, ) /810t (k,0) < I (K*G (1)) . (C3)
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